Structural and mechanistic studies on Klebsiella pneumoniae 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase.
نویسندگان
چکیده
The stereospecific oxidative degradation of uric acid to (S)-allantoin was recently shown to proceed via three enzymatic steps. The final conversion is a decarboxylation of the unstable intermediate 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and is catalyzed by OHCU decarboxylase. Here we present the structures of Klebsiella pneumoniae OHCU decarboxylase in unliganded form and with bound allantoin. These structures provide evidence that ligand binding organizes the active site residues for catalysis. Modeling of the substrate and intermediates provides additional support for this hypothesis. In addition we characterize the steady state kinetics of this enzyme and report the first OHCU decarboxylase inhibitor, allopurinol, a structural isomer of hypoxanthine. This molecule is a competitive inhibitor of K. pneumoniae OHCU decarboxylase with a K(i) of 30 ± 2 μM. Circular dichroism measurements confirm structural observations that this inhibitor disrupts the necessary organization of the active site. Our structural and biochemical studies also provide further insights into the mechanism of catalysis of OHCU decarboxylation.
منابع مشابه
Delineation of the caffeine C-8 oxidation pathway in Pseudomonas sp. strain CBB1 via characterization of a new trimethyluric acid monooxygenase and genes involved in trimethyluric acid metabolism.
The molecular basis of the ability of bacteria to live on caffeine via the C-8 oxidation pathway is unknown. The first step of this pathway, caffeine to trimethyluric acid (TMU), has been attributed to poorly characterized caffeine oxidases and a novel quinone-dependent caffeine dehydrogenase. Here, we report the detailed characterization of the second enzyme, a novel NADH-dependent trimethylur...
متن کاملProperties of the branched-chain 2-hydroxy acid/2-oxo acid shuttle in mouse spermatozoa.
Operation of the branched-chain 2-hydroxy acid/2-oxo acid shuttle for the transfer of reducing equivalents in mitochondria of mouse spermatozoa was studied in vitro in reconstituted systems. Results show that the branched-chain 2-oxo acids within the mitochondria are offered several metabolic pathways. (a) Decarboxylation: mouse sperm mitochondria possess high branched-chain 2-oxo acid decarbox...
متن کاملDifluoromethylornithine irreversibly inactivates ornithine decarboxylase of Pseudomonas aeruginosa, but does not inhibit the enzymes of Escherichia coli.
DL-alpha-Difluoromethylornithine, an enzyme-activated irreversible inhibitor of eukaryotic ornithine decarboxylase and consequently of putrescine biosynthesis, inhibited ornithine decarboxylase in enzyme extracts from Pseudomonas aeruginosa in a time-dependent manner t1/2 1 min, and also effectively blocked the enzyme activity in situ in the cell. Difluoromethylornithine, however, had no effect...
متن کاملCharacterization of ornithine decarboxylase of tobacco cells and tomato ovaries.
Some characteristics of L-ornithine decarboxylase of tomato ovaries and tobacco cells are described. The enzyme has a pH optimum of 8.0. It requires pyridoxal phosphate and thiol reagent (dithiothreitol) for activity. It is specific for L-ornithine and has an apparent Km of 1.4 X 10-4 M. It has an apparent molecular weight of 107000. Putrescine inhibited the activity in vitro. Spermidine and sp...
متن کاملCharacterization of mdcR, a regulatory gene of the malonate catabolic system in Klebsiella pneumoniae.
The Klebsiella pneumoniae mdcR gene, which encodes a LysR-type regulator, was overexpressed in Escherichia coli. Purified MdcR was found to bind specifically to the control region of either the malonate decarboxylase (mdc) genes or mdcR. We have also demonstrated that MdcR is an activator of the expression of the mdc genes, whereas it represses the transcription of the putative control region o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 285 46 شماره
صفحات -
تاریخ انتشار 2010